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ABSTRACT

In the northern part of the Bahariya Depression fi&@ Desert, Egypt) the
Eocene carbonate succession, unconformably ovgrlylre Cretaceous deposits,
consists of three main stratigraphic units; the iN&@azzun and El Hamra formations.
The Eocene carbonates are relevant as they lotat a large economic iron
mineralization. This work revises the stratigraphitibution of the Eocene formations
on the basis of larger benthic foraminifers fronthboarbonate and ironstone beds.
Eight Nummulites species spanning the late Ypresian — early Batort6BZ12 to
SBZ17) were identified, thus refining the chronasgraphic framework of the Eocene
in that region of Central Egypt. Moreover, addiabisedimentological insight of the
Eocene carbonate rocks is presented. The carbdeptesits mainly represent shallow
marine facies characteristic of inner to mid rareftisgs; though deposits interpreted as

intertidal to supratidal are locally recognized.
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Dating of Nummulites assemblages from the youngest ironstone bedsen th
mines as early Bartonian provides crucial informain the timing of the hydrothermal
and meteoric water processes resulting in the fbomaf the iron ore mineralization.
The new data strongly support a post-depositiosiatcturally-controlled formation

model for the ironstone mineralization of the BaymDepression.

Keywords: Nummulites, Eocene carbonates, ironstamepnostratigraphy, Western

Desert, Central Egypt.

1. Introduction

The Bahariya Depression is located near the cepémdlof the Western Desert
of Egypt (Fig. 1) where it shows elliptical geonyesurrounded by a carbonate plateau
mainly formed of Eocene rock units in its northgrart. The Eocene stratigraphy,
especially of the Middle to Upper Eocene formationthe Bahariya region has been a
matter of dispute (Issawi et al., 2009). This wasbpbly due to the lithostratigraphic
variations and facies changes of the Eocene foomstvith respect to their equivalents
outside the region as well as lack of agreemenutathee stratigraphic discontinuities
between the exposed rock units in the area. Thoeerte rock units, the Nagb, Qazzun
and El Hamra formations, were described exclusivetythe Bahariya Depression by
Said and Issawi (1964). These deposits have ecangignificance since they represent
the host rock of the only ironstone mineralizatamrently exploited for steel industry
in Egypt. Moreover, these ore deposits are unidomegathe Caenozoic palaeo-Tethyan
shorelines in North Africa and South Europe (Salaetaal., 2014) and can be
interpreted as an analog for banded iron format{&tBs) (Afify et al., 2015a, b). The

origin of these deposits has also been a mattaciehtific discussion for long time
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(e.g., El Shazly, 1962; El Akkad and Issawi, 1963jd and Issawi, 1964; Basta and
Amer, 1969; Dabous, 2002; Salama et al., 2013, 28&bumy, 2014; Afify et al.,
2014, 2015a, b). Despite this fact no much work feassed on the facies architecture
and evolutionary pattern of the Eocene host roaks their relation with the iron
mineralization. Likewise, there is lack of detailgaronostratigraphic framework of the
Eocene formations. In the classical papers on dwogy of the region, e.g., Said and
Issawi (1964), the age of the Nagb Formation waséty attributed to the early Middle
Eocene whereas the same rock unit was dated as Wjppesian (middle llerdian-
Cuisian) by Boukhary et al. (2011) on the basidanfier benthic foraminifera. The
Qazzun Formation was attributed to the upper MidBlecene without detailed
biostratigraphic basis (Said and Issawi, 1964)sTwas also the case for El Hamra
Formation, which was dated as Upper Eocene (Saldssawi, 1964). In contrast, the
stratigraphic review by Issawi et al. (2009) coesadl that the Lutetian is missing in the
Bahariya Depression, which clearly points out atawersy on the chronostratigraphy
of the Eocene rocks of the area.

This paper provides a scheme of the depositiordideagenetic features present
in the Eocene carbonate formations cropping ouhénorthern part of the Bahariya
Depression and aims to precise their chronostegilgc framework. This is supported
by new biostratigraphic evidence from larger bentloraminifers collected from the
carbonate and associated ironstone rocks. As alt,resming of the iron ore

mineralization can be assessed more precisely.

2. Geologic setting
The sedimentary succession exposed at the norfiatnof the Bahariya area

comprises the Cenomanian Bahariya Formation thainconformably overlain by a
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carbonate plateau formed of Eocene sediments (Big.The Eocene succession
represented by the Nagb, Qazzun and El Hamra fmnsats truncated by Oligocene
fluvial sandstone of the Radwan Formation (El Akladl Issawi, 1963, Said and
Issawi, 1964). The Bahariya Eocene rock units gravalent to the Minia Fm. (= Nagb
and Qazzun formations), Mokattam Fm. (= Rayan FErigwer unit of the El Hamra
Formation) and Maadi Fm. (= Qasr El Sagha Fm.; peupunit of the EIl Hamra Fm.),
which extend mostly to the north and north eagE@yfpt in the Nile Valley and Faiyum
areas (Issawi et al., 1999). The Eocene carbomatesrthern Bahariya are associated
with ironstone mineralization, which affects thesgbonate units at three main areas,
i.e. El Gedida, Ghorabi and El Harra mines (Fig.algng two major fault systems
(Afify et al., 2015b).

The Bahariya Depression was deformed by a NE-tngndght-lateral wrench
fault system associated with several doubly plugdoids and extensional faults (Fig.
1; Sehim, 1993; Moustafa et al., 2003). The stragime in the Bahariya area was
transpressional, starting by the end of the Cangmaand being rejuvenated after the
Eocene (Said and Issawi, 1964; Sehim, 1993; Maoaséf al., 2003). The post—
Campanian NE-SW doubly plunging anticline folds &NE strike-slip faults were
continued throughout the Paleocene and early Eockloeeover, syndepositional
tectonic activity and seismic pulses took placeirdurdeposition of the Eocene
sediments (Said and Issawi, 1964). The depositipatiern of the Eocene rocks in the
study area was controlled by a paleorelief sculptedLate Cretaceous — Early
Paleogene times, ultimately related to the rejuttenaof the Syrian Arc System (Said
and Issawi, 1964). As a consequence, the carbenatession was fractured and folded

along NE to ENE oriented right-stepped en-échetddsf (Fig. 1). The faulting pattern
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shows major NE-SW dextral strike-slip faults, WN&ftistepped, en-échelon normal

faults, E-W normal faults and local thrusts (Fiy. 1

3. Materials and methods

Detailed fieldwork on the Eocene carbonate succaessind the associated
ironstone deposits was supported by analysis eflsatimagery (Figs. 1 and 2). Field
observations and lithostratigraphic logging werenptemented by collecting fossil
specimens, especially larger benthic foraminiféginmulites), mainly from three
outcrops (El Behour, Gar El Hamra and Teetotum) a8l well as from the central part
of El Gedida mine (Figs. 1 and 3). Altogether, wedged six samples collected from El
Behour section (Figs. 1 and 3A), nine samples ctte from Gar El Hamra section
(four samples from the Qazzun Formation, five sasplom the El Hamra Formation)
(Figs. 1 and 3B), four samples from the Teetotuthdéiction (Figs. 1 and 3C) and one
sample from ElI Gedida mine section (Fig. 1). Thdt samples with isolated
Nummulites were disaggregated in a solution of,86; H,O, and water and later
sieved through apertures of 1.0, 0.5 and 0.2 mnh.tld Nummulites samples are
housed at the Stratigraphy, Paleontology and Ma@eosciences Department,
University of Barcelona, Spain.

About 160 samples of carbonate, ironstone, sandstbaystone and other rocks
were collected during fieldwork. Indurated samplesse prepared as thin sections and
polished slabs. Petrography was carried out bygusansmitted polarized and reflected
light microscopes. Staining with alizarin red-paiasn ferricyanide was used to
differentiate the carbonate minerals. Scanningtelaanicroscopic studies (SEM) were
carried out for high-resolution textural and morptatric analyses. Fresh broken pieces

were placed on sample holders supported by carlbmductive tape, followed by
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sputter coating of gold and studied with a JEOL X&M0 operating at 20 kV and
equipped with an energy dispersive X-ray microanal(SEM-EDAX). Mineralogy for

nearly all collected samples was verified by X-powder diffraction analyses (XRD)
using a Philips PW-1710 diffractometer under momogtatic Cu Kt radiation {=

1.54060 A) operating at 40kv and 30 mA.

4. Stratigraphy and sedimentology of the Eocene farations

The Eocene stratigraphic succession exposed abttieern Bahariya study area
is sculptured geomorphologically as a carbonateeglawhere superimposed cycles of
weathering and erosion on these rock units resuftédrmation of several geological
landforms, e.g., mesas, buttes and conical hillg. (E). Outcrops of the Naqgb
Formation can be traced along the western parh®fstudy area (Fig. 1) where it is
characterized by pinkish shading due to iron pigietgm and staining (Fig. 2A). Two
sedimentary sequences separated by an irrequkolaakt surface can be differentiated
in the Nagb Formation (Afify et al., 2015b) (Fi@B, C). The overlying Qazzun and El
Hamra formations are well exposed to the north east of the study area (Figs. 1 and
2A). The Qazzun Formation looks homogenous whilstEl Hamra Formation can be
subdivided into two units; Lower Hamra and Uppentia (Figs. 2D and 3) (Issawi et
al., 2009). The boundary between the two unitsldi&mra Formation is marked by a
brecciated, concretionary irregular thin calcarebad cropping out at El Behour and
Gar El Hamra sections (Figs. 3A, B). The Eocené& rotts show features indicative of
slight syndepositional folding forming anticline darsyncline structures, especially
around highly faulted areas (Fig. 1). In additionthe NW-SE fault systems affecting

the Eocene carbonates, a major extensional NEdgsiém affected the study area (Fig.
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1). These faults, with exposed length of tens lmmketers, likely developed in response
to the Red Sea/Gulf of Suez rifting.
The Eocene marine carbonate formations are cappedndormably by an up to

20 m-thick succession of horizontally-bedded casrital lacustrine carbonate deposits
(Figs. 2A and 3). This unit (Continental carbonaé) is described for the first time in
the northern Bahariya area where it crops out @tibd exposure in the Teetotum and
nearby hills (Fig. 1). This rock unit may be equerd to the Miocene unit described by
Pickford et al. (2010) in the center of the Baharyepression and to the post-Eocene

deposits described by Sanz-Montero et al. (2018)eradjacent Farafra Depression.

4.1. Depositional and diagenetic features of the Eocene carbonate units
Depositional features and palaeoenvironmental pné¢ation of the Eocene rock
units are summarized in Table 1. Some additionsiint about these formations is as

follows:

4.1.1. The Nagb Formation

Description: The Nagb Formation overlies unconformably the @esmaan Bahariya
Formation and is overlain with seeming disconfoyntiy the Qazzun Formation (Figs.
1 and 2A). The Nagb Formation at the Ghorabi andH&ilra sections is up to 13 m
thick. At those localities, the sedimentary sucissonsists mainly of dolostone and
siliceous dolostone beds with few marlstone infateans (Figs. 2B, C). The lower
sequence of the Nagb Formation is mainly compogetlomulitic dolostone at the
bottom (Fig. 4A), oolitic and fossiliferous doloa® at the middle part of the sequence
(Fig. 4B; Table 1) and it is capped by fine- to medgrained dolostone rocks (Fig.

4C). The upper sequence is composed of stromatitlge laminated (Figs. 4D, E),
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fine-grained dolostone with scarce fossils (smedéd, reworked foraminiferal tests).
Laminated fenestral fabrics, stromatolite-like stune, evaporite pseudomorphs,
desiccation cracks and rhizoliths are common featum the upper part of the Nagb
Formation. This rock unit shows pervasive diagendeatures resulting from
micritization (Fig. 4A), dolomitization (Fig. 4),lgification (Fig. 4B), stylolitization
(Fig. 4C), dissolution (Fig. 4B) and cementationhapseudospherulitic, fibro-radiating
carbonates (Fig. 4F). The latter process was maielgted to development of the
paleokarst system that separates the two strahigrapquences.

Interpretation: The carbonate deposits of the Nagb Formation vaeraimulated in
shallow depositional environments, from shallowt&ld) to intertidal-supratidal (Afify

et al., 2015b). The low diversity of fossil asseagas (e.g., nummulitids, alveolinids,
textulariids, and dasycladacean algae) in the loseguence could be interpreted as
characteristic of oligophotic inner- to mid-ramprganments, preferably at water depth
ranging from 40 to 80 m (Hottinger, 1997; Beavingi®enney and Racey, 2004) with
random scatter of nutrients where the nummulitigdgured lower nutrient levels (Bassi
et al., 2013). The association of nummulitids ahea@linids characterizes the shoals
and banks of inner-ramp settings (Buxton and Pedl289). In contrast, abundance of
evaporite pseudomorphs, scarcity of fossils andrettation in the upper sequence are
indicative of high salinity, very shallow and caloonditions in intertidal-supratidal
environments disturbed by current action (Warre@Q& Orti, 2010; Afify et al.,

2015b).

4.1.2. The Qazzun Formation
Description: The Qazzun Formation can be easily differentidtech the underlying

and overlying Eocene rock units because of itsimdisve chalky nature and bright
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white color (Fig. 2A). Thickness of the Qazzun Fation ranges from 4 m at El Gedida
area to 32.5 m at Gar El Hamra section (type secfiags. 2D, 3B). The carbonate
deposits of the Qazzun Formation consist mainlynagsive, bright white, nummulite-
rich chalky limestone forming tabular, meter-thio&nks alternated with soft, slope-
forming mud-supported chalky limestones. The caab®nrocks of the Qazzun
Formation exhibit nummulitic wackestone and paaksttabrics where the nummulites
tests occur usually scattered in the micrite maffig. 5A) although closely packed
nummulites test are locally observed. Micritizati@amd dissolution features are
common.

Interpretation: The occurrence of nummulitic wackestone/packstiaoges in banks
with un-oriented fabrics reflects shallow wateghenergy conditions in a middle ramp
setting (Hottinger, 1997). The homogeneity of theids forming the Qazzun Formation

suggests low variation of sea-level through time.

4.1.3. The El Hamra Formation

Description: Similar to the Qazzun Formation, the thicknesthefEl Hamra Formation
increases towards the north where it reaches @b tm at Gar El Hamra section. The
carbonate deposits of the EI Hamra Formation anmposed of soft to slightly
indurated, fossil-rich limestone with sandy limestpmarlstone, glauconitic limestone,
and siltstone intercalations. The formation is subldd into two units separated by a
thin discontinuous brecciated limestone bed (LoM@mra and Upper Hamra; Figs. 2D,
3, Table 1). The lower unit is composed of yellomgssive, nummulite-rich limestone-
sandy limestone beds with gradual upwards increbegster and gastropod banks (Fig.
3). Nummulitic packstone/rudstone, fossiliferousciestone-packstone (Fig. 5B) and

oyster rudstone (Fig. 5C) are the dominant facigbé Lower Hamra unit. Nummulitid
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tests, miliolids, oyster and gastropod shells, lboedebris and echinoid spines are the
most abundant fossil skeletons in the Lower Hamma (Table 1; Figs. 5B, C). The
Upper Hamra unit is characterized by dominance latigpnitic fossiliferous sandy
limestone, siltstone/sandy clays with gradual uplwacrease of clastics and gastropod
and oyster banks (Figs. 2D, 3). These lithofacresrigh in silt-sized quartz grains and
the terrigenous content can exceed 50% of the wlomthe rock thus resulting in
fossiliferous siltstone. The dominant facies of theper Hamra are the fossiliferous
glauconitic packstone-grainstone (Fig. 5D), oystetstone and fossiliferous siltstone
where the main skeletal particles are of oysteastrgpods, bryozoans and miliolids.
Calcitization of skeletal particles, micritizatiand dissolution features are the main
diagenetic features of the El Hamra Formation (6&5D).

Interpretation: The carbonate and terrigenous facies of the El fdaRormation are
indicative of deep to shallow subtidal environmenifie common occurrence of
nummulite-rich banks in the lower unit reflects peseibtidal environment. The relative
abundance of bioclasts in the Lower Hamra reflektferent sub-environments, i.e.
miliolids, gastropods and oysters live in the inmamp environment whereas the
nummulitids and echinoids are characteristic opeeenarine areas (Flugel, 2004). The
Lower Hamra unit shows shallowing upward conditiamhanced by occurrence of
oyster and gastropod banks in its upper part. Tdoeiroence of brecciated deposits on
the top of the lower unit points to an episode udfagerial exposure. The dominance of
gastropod and oyster banks in the Upper Hamrainghitates moderate to high energy
conditions, lesser than 50 m deep, in nutrient-welers of inner ramp settings (Fligel,
2004). The abundance of silt-sized quartz graimsgauconitic grains in the packstone
facies of the Upper Hamra unit typically refleatsvisedimentation rate and deposition

from suspension nearby a clastic source in shaBowtidal environments (Flugel,
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2004). Prevalent shallow conditions in the Uppemirfi unit are consistent with a sea-

level regression, as suggested by El Habaak €2Gil6).

4.2. Sedimentary features of the ironstone mineralization

The Bahariya ironstone rocks are mainly locatethiae areas; i.e. the Ghorabi,
El Harra and El Gedida mines. These locations arectent with two major fault
systems oriented NE-SW (Fig. 1). In the Ghorabi BhdHarra areas, thickness of the
ironstone succession ranges from 7 to 13 m, wlsckimilar to the thickness of the
carbonate deposits of the Nagb Formation in neaneas. Likewise, the ironstone
succession is formed of two sequences (Fig. 6Agreithe iron-rich rocks show clear
evidence for replacement and/or cementation of dhgbonate fabrics by Fe-Mn
minerals (Afify et al., 2015b). Some unaltered tllay/marl beds occur intercalated
with the ironstone rocks (Fig. 6A). At El Gedidanaj the ore mineralization consists of
up to 30 m-thick black, indurated ironstone thahpeehensively replaced the carbonate
succession of the Eocene Nagb, Qazzun and El Heommations (Figs. 6B, 7). Most
facies and fabrics occurring in the carbonate uwiggse recognized in the ironstone.
Towards the upper part of the ironstone successiorEl Gedida, a 3 m-thick
fossiliferous ironstone bed (Fig. 6B) furnished hricwell-preservedNummulites
assemblages. This bed is overlain by pisolithiastone rocks occurring at the topmost
part of the ironstone succession. This is in taroapped by up to 10 m-thick, greenish
glauconitic claystone and up to 15 m-thick ferragia black sandstone (the Radwan
Formation) respectively (Fig. 6B). The green glautto beds are stratigraphically and
sedimentologically correlatable with the upper wiiEl Hamra Formation, despite it is

barren of fossils.
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A variety of minerals was determined in the irongt®, i.e. iron oxyhydroxides,
guartz, manganese minerals, apatite, dolomite, olyerals, and sulfate minerals
(Afify et al.,, 2015b). Goethite and hematite aree tmain iron-bearing minerals.
Petrography of the ironstone reveals that the eposits exhibit the main textures and
structures of their precursor host carbonates @igThe main textures and fabrics of
the carbonates of the Nagb Formation are presemethe ore deposits where
nummulitic mud-wacke ironstone, oolitic and fodsilous ironstone, massive to
brecciated non-fossiliferous ironstone and strotitatbke fabrics can be recognized
(Fig. 8A-D). Likewise, the nummulitic wackestonezkstone facies characteristic of
the Qazzun Formation and the fossiliferous paclkstinthe El Hamra Formation are
recognizable in the ironstones (Figs. 8E, F). Thpntost part of the ironstone
succession includes large pisoids that show vadesgents (Figs. 8G, H) and some
rhizoliths replaced by iron oxides (Fig. 81). Tresaciation of vadose cements, pisoliths
and root structures is clearly indicative of subEerxposure.

Both the stratigraphic and structural featuresya®a in the northern Bahariya
area point to a close relationship between theildigton of the ironstone deposits and
major faults (Figs. 1 and 7). Extensive replacenuéthe Eocene carbonate formations
by Fe and Mn oxides and other associated minecaisrs in localized areas near major
fault lineaments where the ore deposits retain elgrgnany stratigraphic and
sedimentary features of their host carbonate rocksthickness, bedding, lateral and
vertical sequential arrangement and fossil con@ntbasis of petrography, mineralogy
and geochemistry as well as ironstone associadoddistributions, Afify et al. (2014;
2015a, b) suggested that the iron oxyhydroxides wieposited in the carbonate rocks
by hydrothermal solutions related to regional matgnactivity in the region and

moved upwards through the NE-SW major faults, treeg and discontinuities.
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4.3. Biostratigraphy of the Eocene formations and ironstones

The new biostratigraphic data provided in this waake based on the
assemblages ofNummulites, a group of larger foraminifers well described and
illustrated in monographs such as those by Schae®1( 1995) and Racey (1995). The
biostratigraphic range of each species was detexanatcording to zones defined by
Schaub (1981) and the Shallow Benthic Zones (SBZjacterized by Serra-Kiel et al.
(1998). The species identified in this work areugtrated in Plate 1 and their
biostratigraphic ranges are given in Figure 9. A#Hta about the intervals and
distribution of Nummulites in the studied sections are summarized in Figurettere
the range chart of the 19 fossil samples is sh@inthe Nummulites specimens were
collected from the Qazzun and El Hamra formatidhsvas difficult to find well
preserved specimens from the Nagb Formation irstidied sections due to the strong
replacement of the fossil grains by silica. The glentollected from the upper part of
the ironstone succession in the El Gedida mine. 8) shows good preservation of
Nummulites specimens with slight replacement by iron.

In the carbonate beds of the Qazzun Formationtsatype locality of Gar El
Hamra section (Figs. 1 and 3B), three larger berfimiaminifers were identified, i.e.
Nummulites syrticus ScHAuB, 1981 (PI. 1, Fig. 26)N. praelorioli HERB & SCHAUB,
1963 (PI. 1, Figs. 10-14) and. migiurtinus AzzaroLl, 1952 (PI. 1, Figs. 15-18).
Likewise, fourNummulites species were identified from the carbonate depatitthe
lower unit of the EI Hamra Formation in the threéadsed sections (Fig. 3), i.eN.
migiurtinus, N. gizehensis (FORsSkAL, 1795) (Pl. 1, Figs. 1-9)N. discorbinus
(ScHLOTHEIM, 1820) (PI. 1, Figs. 27, 28) aridl beaumonti D’ARCHIAC & HAIME,

1853 (PI. 1, Figs. 20, 21).



321 The carbonate beds of the upper unit of the El FaRormation are barren of
322 Nummulites (Fig. 3), but contain diverse macrofossils suchQstrea clotbeyi, O.
323  multicostata, Carolia placunoides andTurritella sp.

324 A fossil sample collected from the uppermost pathe ironstone succession in
325 the central hill of El Gedida mine (Figs. 1, 6B)lged Nummulites gizehensis, N.
326  biarritzensis D’ARCHIAC & HAIME, 1853 (PI. 1, Fig. 25)N. beaumonti and N. lyelli
327 D'’ARCHIAC & HAIME, 1853 (PI. 1, Figs. 29, 30).

328 The eight identifiedNummulites species allow us to reassess the age of the
329  Eocene rock units, especially the Qazzun and Elnddarmations. The distribution and
330 time-span of thesBlummulites species are shown in Figures 9 and 10. The presenc
331 Nummulites syrticus and N. praelorioli in the lower part of the Qazzun Formation
332 indicates an early Lutetian age (SBZ13) (SchauBl1%erra-Kiel et al., 1998) whilst
333 presence oNummulites migiurtinus in the upper part of the Qazzun Formation and the
334 lowermost part of the EI Hamra Formation indicaéesearly to middle Lutetian age
335 (SBZ13/SBZ14) (Schaub, 1981; Serra-Kiel et al.,8)9%he dominance dflummulites
336  gizehensis, associated witN. beaumonti andN. discorbinus in the lower unit of the El
337 Hamra Formation at Gar El Hamra and El Behour gestyields a middle-late Lutetian
338 age (SBZ15/SBZ16) (Schaub, 1981; Serra-Kiel et #098). The occurrence of
339  Nummulites beaumonti in the upper part of the lower unit of the El Harfi@@mation at
340 the Teetotum Hill section suggests middle Lute{l@BZ15) to Bartonian (SBZ17).

341 Summarizing, the Nagb Formation is considered tariigdle-late llerdian in
342 age because twNummulites species, i.eNummulites fraasi DE LA HARPE, 1883 and
343  Nummulites pernotus SCHAUB, 1951 (SBZ6 — SBZ9; Schaub, 1981; Serra-Kiel gt al
344 1998), were recorded in it by Boukhary et al. (20(Eg. 10). TheNummulites species

345 studied from the Qazzun Formation assigned an éargtian age or SBZ13 for this
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rock unit (Fig. 10). The lower unit of the EI HamF®rmation is considered to be
middle-late Lutetian/early Bartonian in age or SBZABZ17 (Fig. 10). Although no
larger benthic foraminifers were collected by usnirthe upper unit of EI Hamra
Formation, it containBlummulites striatus (BRUGUIERE, 1792) according to Issawi et al.
(2009), indicating the Bartonian-early Priaboniars8218-SBZ19 (Fig. 10).
Unfortunately, the low diversity dNummulites -only eight species have been
identified- does not permit greater precision betvéhe boundaries of the Shallow

Benthic Zones (SBZs).

5. Discussion on timing of ore mineralization procgses

The close similarities of both lithostratigraphicda sedimentary features
between the ironstone and the Eocene carbonateafioms in which the ironstone is
hosted strongly support replacement and cementafighe carbonates by silica, iron
oxyhydroxides, manganese-rich and other subordinatesrals as a result of post-
depositional and structurally-controlled processdss was clearly demonstrated by
Afify et al. (2015b) for the dolostones of the Nagtrmation. Moreover, recognition of
replacement and/or cementation of the carbonatesitspof the Qazzun and El Hamra
formations by the same assemblage of Fe-Mn minstadagly suggests that the whole
set of Eocene deposits were affected by a uniqdeoktiyermal event sourcing iron-rich
fluids. These fluids moved throughout the main tfayistems that affected the Eocene
carbonate formations (Fig. 7) and mixed with mategroundwater (Afify et al.,
2015a) so that relative timing for the precipitatiof the iron ore minerals must be
linked to the deformational stages of the Eocemeareate plateau. Fault zones played a
crucial role in focusing fluid migration into thein, as can be inferred from the study

of many hydrothermal, sediment-hosted ore depegisdwide (Ceriani et al., 2011).
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The lateral association of the ironstone mineréibrawith volcanic rocks south of the
study area argues for the relationship betweenfdhmation of the ironstone and
magmatism (Afify et al., 2014; 2015a, b).

The ironstone deposits were formed through disgwittorrosion of the host
carbonate rocks with no replacement of the assatiatlay intercalations. The
widespread red pigmentation of the carbonate depadi the Nagb Formation by
comparison to those of the Qazzun and El Hamradbams was favored by the more
porous fabrics of the dolostones, i.e. dolostonenme porous and susceptible to
fracturing and brecciation than limestone (Budd &ather, 2004). The replacement
was most probably syngenetic to the formation efgisolithic fabrics on the topmost
part of the ironstone succession and before thegligmn of the glauconitic claystone
overburden that was not affected by iron mineréibra Altogether, the aforementioned
deformational and karstic features determined toephology and extent of alteration
and mineralization exposed in the area and enhabgedermeability of carbonate
rocks.

The new biostratigraphic data acquired in this paglws integration of the
post-depositional genetic model proposed previobghAfify et al. (2015a, b) for the
ironstone deposits with the chronology of the aering processes. The presence of
ferruginized specimens odN. gizehensis (SBZ14-SBZ16),N. beaumonti (SBZ15-
SBZ17), N. lydli (SBzZ17) and N. biarritzensis (SBZ17) of middle-late
Lutetian/Bartonian age in the upper part of th@stone succession at El Gedida mine
area along with the presence of alveolinids andmuhtids of the Nagb Formation and
the nummulitids of the Qazzun Formation indicatest the carbonates replaced by the
ore deposits span late Ypresian — early Bartoriae.formation of the ore deposits can

be dated later than early Bartonian, most probdblyng the Priabonian and before the
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Oligocene which is supported by the fact that mitthe Priabonian glauconitic
claystones related to the upper unit of the ElI Hamormation nor the Oligocene
sandstones show iron replacement. This statemesdnsistent with the Late Eocene
magnetization assigned for the Bahariya area byh({@@04) and confirms previous
interpretation by Afify et al. (2015b) that the msione was a post-depositional,

structurally-controlled ore deposit.

6. Concluding remarks

The chronostratigraphy of the Eocene rock unitening the carbonate plateau
to the north of the Bahariya Depression (Westerrselll® has been precised by
analyzing new samples &fummulites species collected in the study area. The Nagb
Formation is dated as middle to late llerdian (Mpgesian; SBZ6 to SBZ9) whilst the
Qazzun Formation contains fauna attributable toghdy Lutetian (SBZ13). On the
basis of larger benthic foraminifers, the lowertwfithe EI Hamra Formation is dated
as middle to late Lutetian (SBZ14 to SBZ16) reaghup to the early Bartonian
(SBZ17) whereas the age of the upper unit is atkeith to the late Bartonian and part of
the Priabonian as indicated by mollusk assemblagesording to this data, the
Lutetian stage is identified for the first time time region. Moreover, the succession
exposed in the northern Bahariya shows a ratherdecord of Eocene strata.

Dating of Nummulites assemblages from the youngest ironstone bedsrbs ea
Bartonian gives light on the relative timing forethhydrothermal and meteoric
groundwater processes that led to the formatiorthef ore body. These processes
probably took place throughout the Priabonian. Batttime, sea level regression

resulted in subaerial exposure ultimately relatedettonic deformation of the region.
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Ascending hydrothermal fluids leading to the fornnmatof the ore minerals followed the

pathways created by the fault systems affectingtba.
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TABLE CAPTIONS

Table 1. Summary of the sedimentary features, fossil caraed palaeoenvironments

for the three Eocene formations in the northernaBigh region.
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FIGURE CAPTIONS

Fig. 1. Geologic map of the northern Bahariya area (medifafter Said and Issawi,
1964). See locations of the measured sections.

Fig. 2. A. Landsat image showing the distribution of trec&ne rock units through the
northern part of the Bahariya area (1- Nagb Fomnat2- Qazzun Formation and 3- El
Hamra Formation). Note that the Eocene formatioms averlain disconformably by
nearly horizontal continental carbonate unit (4).lumnar section showing the two
sequences of the Nagb Formation at the sectionestuat Ghorabi area. C. Outcrop
view showing the two sequences (1: lower sequecapper sequence) of the Nagb
Formation separated by paleokarst features. D.dHRalotograph showing the type
section of the Qazzun and El Hamra formations atEb&lamra area.

Fig. 3. Stratigraphic cross-section showing the distrdoutdf Nummulites along the EI-
Behour section (A), the Gar El Hamra section (BJ Hre Teetotum Hill section (C).

Fig. 4. Petrographic features of the Nagb Formation. AmNuwlitic dolostone with
medium-grained dolomite rhombs. Note the partiakdiution of the dolomite crystals
as well as the micritization of the nummulitid tesB. Oolitic fossiliferous dolostone
showing dissolution pores cemented by quartz. 6e F6 medium grained dolostone.
Note a vertical stylolite cemented by calcite (aryoD, E. Stromatolite-like dolostone.
Note the white laminae of quartz in-between the fiaminae of dolomites (D) with
desiccation cracks (E). F. Pseudospherulitic anb{fiadiating dolomite after calcite.
All microphotographs in crossed nicols (C.N.).

Fig. 5. Textures of the Qazzun and ElI Hamra formations. Mummulitic
wackestone/packstone facies with nummulitid testtered in the micritic matrix
(C.N.). B. Fossiliferous packstone with nummulitiests, gastropods, oysters and

miliolids closely packed together. Note the catetion of the skeletal particles (C.N.).
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C. Oyster rudstone with shells commonly bored (L.®. Glauconitic fossiliferous
packstone with bivalve shell fragments, gastropod$iplids and oxidized glauconitic
grains (PPL). (C.N. = crossed nicols, PPL = planlanzed light).

Fig. 6. A. Panoramic view of the Nagb Formation showingngtone beds and clay
intercalations (white arrows) arranged in two seges. B. Outcrop view of the
ironstone succession exposed at the central p&t Gedida mine (X is the location of
the collected fossil sample).

Fig. 7. Landsat image showing the main exploited ore mihé&loGedida and the
surrounding carbonates. The geologic profile shdomes structural and stratigraphic
relationships of the Eocene units and the ore depiosthe same area.

Fig. 8. Microphotographs showing different ironstone fabriA. Nummulitic ironstone
with quartz cementing moldic porosity (C.N.). B. o, fossiliferous ironstone where
all the grains are partly replaced/cemented by &od quartz after dolomite (C.N.). C.
Highly crenulated, colloform ferromanganese oxidgslacing speleogenic carbonates
(PPL). D. Laminated iron with high porosity in-bet@n the laminae (PPL). E. Ghosts
of nummulitid tests scattered in iron oxide grouads) Qazzun Formation (PPL). F.
Fossiliferous ironstone with nummulitic tests amome fragmented bivalve shells
replaced by iron as well as quartz, EI Hamra Faona{C.N.). G, H. Pisolithic
ironstone with irregular pisoliths packed togetherd cemented by fibrous and
microcrystalline iron cement (G. PPL, H. reflectight). I. SEM photo showing tabular
hematite replacing rootlets in the pisolithic irtoree.

Fig. 9. Nummulites species identified in the Qazzun and El Hamra &ioms and their
biostratigraphic range according to Schaub (19&d)Zerra-Kiel et al. (1998).

Fig. 10. A composite section (not at scale) of the main Beckhostratigraphic and

chronostrigraphic units and shallow benthic forafenal zones (SBZs) after Serra-Kiel
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et al. (1998). The shallow benthic zones writterrad color are re-interpreted after
previous dating by Boukhary et al. (2011) and Sadl Issawi (1964). The violet

shaded rectangle is the relative timing proposedhi® iron mineralization.
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PLATE CAPTIONS

Plate 1.

1-9: Nummulites gizehensis (FORSKAL, 1795) 1-7 megalospheric forms; 8-9
microspheric forms; 1, 3, 5, 6 and 8 equatoriatises; 2, 4, 7 and 9 external views.
Specimens 1, 2, 5-9 from sample LF 6B; 3 and 4 fremmple LF 2A.10-14:
Nummulites praelorioli HERB & ScHAuUB, 1963 10-13 microspheric forms; 14
megalospheric form. All specimens are equatoriatiees. Specimens 10, 11 and 14
from sample LF 3B; 12 and 13 from sample LF 2B-18: Nummulites migiurtinus
AzzARoOLI, 1952 15-17 microspheric forms; 18 megalospheric forf, 16 and 18
equatorial sections; 17 external view. All specismdrom sample LF 4B19-24:
Nummulites beaumonti D’A RCHIAC & HAIME , 1853 19-21 microspheric forms; 22—
24 megalospheric forms; 19, 21-24 equatorial sesti@0 external view. Specimens
19-21 from sample LF 1C; 22-23 from sample LF 8B a4 from sample LF 7R5:
Nummulites biarritzensis D’ARCHIAC & HAIME , 1853 microspheric form; equatorial
section. Specimen from El Gedida ironstone sang@ieNummulites syrticus SCHAUB,
1981 microspheric form; equatorial section. Specimssmf sample LF 1B27-28:
Nummulites discorbinus (ScHLOTHEIM , 1820) microspheric forms, 27 equatorial
section; 28 external view. Specimens from sample9BE29-30: Nummulites lyelli
D'’ARCHIAC & HAIME, 1853 megalospheric forms; 29 equatorial section; 3@real

view. Specimen from El Gedida ironstone sample.
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Highlights

* The chronostratigraphic framework of Eocene succession in Central Egypt is
updated.

» The carbonate succession represents along record of Eocene strata.

e Eight Nummulites species spanning the late Ypresian-early Bartonian are
identified.

* lronstone formation took place later than the early Bartonian, mostly in the
Priabonian.

» Agedating of iron mineralization is crucial to explain its genesis.
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